시그모이드2 활성화 함수: 정의와 종류, 비선형 함수를 사용해야 하는 이유 안녕하세요. 모두의 케빈입니다. 오늘은 딥 러닝에서 사용되는 활성화 함수의 개념과 왜 비선형 활성화 함수를 사용해야 하는지, 그리고 대표적인 비선형 활성화 함수들에 대해 알아보도록 하겠습니다. ■ 활성화 함수란 활성화 함수는 인공 신경망에서 입력값을 변환하는 함수입니다. 대표적으로는 Sigmoid, ReLu 등이 있습니다. 인공 신경망은 인간 두뇌 활동을 모방하기 위해 뉴런의 구조를 참고했습니다. 뉴런은 일정 세기 이상의 자극일 경우에만 신호를 전달하는 계단 함수(Step) 방식을 사용합니다. 따라서 최초의 인공 신경망이라고 평가받는 퍼셉트론은 계단 함수를 사용했습니다. 하지만 이러한 방식으로는 인공 신경망의 학습이 제대로 이루어지기 어려웠습니다. 인간은 오랜 시간 동안 하나의 분야를 탐구하고 학습하지만.. 2022. 11. 1. 딥 러닝을 위한 회귀 분석의 이해: Logit, Sigmoid, Softmax 안녕하세요. 모두의 케빈입니다. 딥 러닝과 심층 신경망을 보다 깊이 알기 위해서는 회귀 분석에 대한 이해가 선행되어야 합니다. 그래서 오늘은 회귀 분석의 정의부터 딥 러닝에 실제로 활용되는 Logit, Sigmoid, Softmax의 관계까지 살펴보는 시간을 가져보고자 합니다. 긴 글이지만, 천천히 쫓아오면서 읽어주세요. :) ■ 회귀 분석의 기본적인 개념 회귀 분석은 종속 변수와 독립 변수 사이의 내재된 관계를 잘 표현하는 함수를 찾는 과정입니다. (인과관계를 증명하는 방법론이 아니라, 인과관계가 상정된 모델을 구현하는 것입니다.) 함수가 적합한지에 대한 척도로 다양한 공식이 있겠지만 가장 널리 알려진 대표적인 척도로는 MSE(Mean Square Error)가 있습니다. MSE는 함수의 예측값과 실측.. 2022. 10. 31. 이전 1 다음